Fyncall
AI-powered customer service platform with multi-agent systems, unified messaging, and intelligent automation.
Key Metrics
100K+
Lines of Code
150+
API Endpoints
35+
AI Tools Built
15+
OAuth Integrations
Overview
Fyncall is a comprehensive AI-powered customer service platform that I co-founded and built as CTO. The platform revolutionizes how businesses handle customer interactions through intelligent automation, multi-agent AI systems, and unified messaging across all channels. From architecture to deployment, I built the entire technical infrastructure from the ground up.
My Role
Co-Founder & CTO
As CTO, I'm responsible for the entire technical vision, architecture, and implementation. I designed and built all backend systems, AI pipelines, integrations, and infrastructure. I also lead technical decisions, manage the development roadmap, and ensure the platform meets enterprise-grade reliability standards.
Challenges
Multi-Channel Message Unification
Customers expect seamless conversations across WhatsApp, Instagram, Email, SMS, and web chat. Each platform has different APIs, rate limits, and message formats that needed to be normalized into a single conversation thread.
Real-Time AI Response Generation
AI responses needed to be fast (<2 seconds), contextually aware of the entire conversation history, and capable of accessing business-specific knowledge bases without hallucination.
Complex Multi-Agent Orchestration
Different customer queries require different specialized agents (sales, support, billing). Routing queries to the right agent while maintaining conversation context was a significant architectural challenge.
Enterprise Integration Requirements
Businesses need AI that can actually take actions - process refunds in Stripe, check orders in Shopify, update records in their CRM. Building secure, reliable integrations at scale was critical.
Solutions
Unified Message Bus Architecture
Built a message normalization layer that converts all platform-specific formats into a unified schema. WebSocket connections maintain <100ms latency for real-time updates across all channels.
RAG-Powered Knowledge System
Implemented a Retrieval-Augmented Generation system with semantic search that achieves sub-second retrieval from knowledge bases. This ensures AI responses are grounded in actual business data.
LangGraph Supervisor Pattern
Designed a multi-agent system using LangGraph where a Supervisor agent routes conversations to specialized agents (Sales, Support, Billing) based on intent classification and conversation context.
MCP Protocol for Tool Integration
Implemented Model Context Protocol (MCP) for standardized tool calling. This allows AI agents to securely interact with external services like Shopify, Stripe, and custom APIs.
Architecture
┌─────────────────────────────────────────────────────────────────┐
│ CLIENT LAYER │
├─────────────────────────────────────────────────────────────────┤
│ WhatsApp │ Instagram │ Email │ SMS │ Web Widget │
└─────────────────────────────────────────────────────────────────┘
│
▼
┌─────────────────────────────────────────────────────────────────┐
│ MESSAGE GATEWAY │
│ ┌──────────────┐ ┌──────────────┐ ┌──────────────┐ │
│ │ Webhook │ │ WebSocket │ │ Message │ │
│ │ Handlers │ │ Server │ │ Queue │ │
│ └──────────────┘ └──────────────┘ └──────────────┘ │
└─────────────────────────────────────────────────────────────────┘
│
▼
┌─────────────────────────────────────────────────────────────────┐
│ AI ENGINE │
│ ┌──────────────────────────────────────────────────────────┐ │
│ │ SUPERVISOR AGENT │ │
│ │ ┌─────────┐ ┌─────────┐ ┌─────────┐ ┌─────────┐ │ │
│ │ │ Sales │ │ Support │ │ Billing │ │ Custom │ │ │
│ │ │ Agent │ │ Agent │ │ Agent │ │ Agents │ │ │
│ │ └─────────┘ └─────────┘ └─────────┘ └─────────┘ │ │
│ └──────────────────────────────────────────────────────────┘ │
│ ┌──────────────┐ ┌──────────────┐ ┌──────────────┐ │
│ │ RAG Engine │ │ Tool │ │ Memory │ │
│ │ (Knowledge) │ │ Executor │ │ Manager │ │
│ └──────────────┘ └──────────────┘ └──────────────┘ │
└─────────────────────────────────────────────────────────────────┘
│
▼
┌─────────────────────────────────────────────────────────────────┐
│ INTEGRATION LAYER (MCP) │
│ ┌─────────┐ ┌─────────┐ ┌─────────┐ ┌─────────┐ │
│ │ Shopify │ │ Stripe │ │ Gmail │ │ Twilio │ │
│ └─────────┘ └─────────┘ └─────────┘ └─────────┘ │
└─────────────────────────────────────────────────────────────────┘
│
▼
┌─────────────────────────────────────────────────────────────────┐
│ DATA LAYER │
│ ┌──────────────┐ ┌──────────────┐ ┌──────────────┐ │
│ │ PostgreSQL │ │ Redis │ │ Vector DB │ │
│ │ (Primary) │ │ (Cache/Queue)│ │ (Embeddings) │ │
│ └──────────────┘ └──────────────┘ └──────────────┘ │
└─────────────────────────────────────────────────────────────────┘ Technical Highlights
Multi-Agent LangGraph System
Built a sophisticated agent orchestration system using LangGraph with a Supervisor pattern. The system dynamically routes conversations to specialized agents based on intent classification, maintaining full conversation context across agent transitions.
Sub-Second RAG Retrieval
Implemented a high-performance RAG system using vector embeddings and semantic search. Knowledge base queries return relevant context in <500ms, enabling real-time AI responses grounded in business data.
35+ AI Tools with MCP
Developed 35+ intelligent tools that AI agents can use to interact with external services. Using the Model Context Protocol ensures secure, standardized tool execution with proper error handling.
Real-Time WebSocket Infrastructure
Built a WebSocket infrastructure that handles thousands of concurrent connections with <100ms message latency. This enables real-time chat experiences across all messaging channels.
Complete OAuth Integration Suite
Implemented OAuth 2.0 flows for 15+ services including Shopify, Instagram, Gmail, and Stripe. The system handles token refresh, scope management, and secure credential storage.
Full Observability Stack
Deployed a complete monitoring solution with Grafana dashboards, Prometheus metrics, and Loki log aggregation. This provides real-time visibility into system health, AI performance, and user interactions.
Results & Impact
100K+
Lines of Production Code
150+
REST API Endpoints
35+
AI Tools Built
<100ms
Message Latency
15+
OAuth Integrations
17+
Docker Containers
Lessons Learned
- → Start with a solid message abstraction layer early - retrofitting channel-specific logic is painful
- → LangGraph's graph-based approach is excellent for complex AI workflows with branching logic
- → RAG quality depends heavily on chunking strategy and embedding model selection
- → Always build comprehensive logging from day one - debugging AI systems without it is nearly impossible
- → OAuth implementations vary wildly between providers - budget extra time for edge cases
Technologies Used
Interested in Similar Work?
I'm available for freelance projects and full-time opportunities. Let's discuss how I can help bring your ideas to life.
Get in Touch